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Abstract 

Performance Handicap Systems in yachting yield a handicap (a number) that enables yachts of varying speed 

potential to compete in races where the yacht with the least corrected time wins – where corrected time is 

elapsed time multiplied by the handicap.  After a race, calculated handicaps are obtained from a set of rules 

applied after the standard corrected time of the race has been determined.  This paper demonstrates new 

methods of determining the standard corrected time and calculated handicaps as well as reviewing some 

current methods. 
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Introduction 

A Performance Handicap System (PHS) in yachting is a set of rules and mathematical calculations that 

enable yachts of varying speed potential to compete in races where the yacht with the least corrected time is 

the winner.  The PHS produces a handicap which is a number, usually somewhere between 0.750 and 1.250.  

In local terminology (Australia) this handicap is known as the allocated handicap AHC and the yacht’s 

elapsed time ET multiplied by the allocated handicap yields the corrected time CT, or 

 k k kCT ET AHC= ×  (1) 

where the subscript k denotes the kth boat in the fleet of n yachts and 1,2, 3, ,k n= …  and 

  finish time of  yacht start timeth
kET k= −  (2) 

So, the handicap is a numerical value that is a measure of the performance of both the yacht and the crew  

[A yacht’s PHS derived handicap is different from a yacht’s rating which is a numerical measure 

of potential speed based upon the yacht’s parameters, e.g. waterline length, beam, displacement, 

sail area, etc. and a sequence of mathematical formula related to the physics of hydrodynamics 

and aerodynamics as applied to yachting force models (World Sailing1 2019).  There are several 

measurement systems that give yacht ratings, e.g., The International Offshore Rule (IOR), the 

Chanel Rating System (CHS), the International Measurement System (IMS) and the 

International Rating Certificate (IRC).  A popular measurement rating system in Australia and 

particularly in Victoria is the Australian Measurement System (AMS) administered by Yacht 

Racing Services Association Inc. (YRSA) for the Australian yachting community.  This paper is 

not concerned with measurement systems or the ratings derived from them.] 

The essence of a Performance Handicap System are the rules that enable the adjustment of handicaps after 

racing.  Some of these rules may be arbitrary, some could be based on experience and some could be in place 

to achieve desired outcomes.  Indeed, a PHS used in one yacht club could be different from that used in 

another club; or the PHS used for a regatta could be different from the usual club PHS.  And, as we will 

discuss, a calculated handicap produced by the PHS after a race is related to the number of yachts in that 

race; their handicaps; the handicap of a mythical or real mark boat; and the allowable changes in handicaps. 

 
1 World Sailing is the world governing body for the sport of sailing formed in 1907 and then known as the 

International Yacht Racing Union (IYRU).  The name was changed to the International Sailing Federation 

(ISAF) in 1996 before adopting the name World Sailing in 2015. 
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The sequence of steps in calculating a yacht’s new PHS handicap are 

1 A Standard Corrected Time STC is established for the race and this is the corrected time of the 

mark boat (which may be real or mythical). 

2 A Back Calculated Handicap BCH is derived from the rule k kET BCH SCT× =  and 

 k

k

SCT
BCH

ET
=  (3) 

 There may be some screening of the BCH to detect anomalous results. 

3 A Calculated Handicap CHC is evaluated from a function of the allocated and back-calculated 

handicaps.  There may be some further screening of the calculated handicap before it becomes the 

yacht’s allocated handicap for the next race. 

This paper will outline some of the usual methods of determining the standard corrected time including a 

new method we are proposing.  And, in addition, we will provide an explanation of some methods used to 

obtain the calculated handicap as well as a new method we call a Performance Indicator Filter.  

Examples of the calculations of a Performance Handicap System will be given for a series of yacht races that 

we now describe. 

The Yacht Race Series 

The Sandringham Yacht Club (SYC) 2018-19 Summer Aggregate, Division 1, Performance Handicapping 

System (PHS) was a 10-race series with published results using TopYacht2 software showing race and 

handicapping details for races 1,2,3,4,6,7 and 10 (see Appendix A).  For these seven races we have selected 

the 10 yachts that completed at least five of these races: Bandit, Conquest, Dark and Stormy, Dream, Esprit, 

Joust, Niche, Scarlett Runner II, Sierra Chainsaw and Wicked.  Each of these yacht’s elapsed times ET have 

been extracted from the published race results and a yacht’s initial handicap is taken as the allocated 

handicap AHC for that race shown in the race results.  These data form our Yacht Race Series and are 

shown in Appendix B.  Also, Appendix B contains the results of the Yacht Race Series scored by two 

different methods – one method commonly used in Victorian yachting and the other by the new methods we 

are proposing. 

Nomenclature 

The following notation has been used 

Symbol Meaning Definition 

α  weight factor in EWMA  

AHC allocated handicap  

BCH back calculated handicap BCH SCT ET=  

CHC calculated handicap  

CT corrected time CT ET AHC= ×  
ET elapsed time  finish time  start timeET = −  
EWMA exponentially weighted moving average  

H true handicap H AHC Hδ= +  
SCT standard corrected time  

Hδ  small unknown correction to a handicap  

j, k integer counters usually seen as subscripts  

K multiplier in Performance Indicator Filter  

 
2 TopYacht (https://topyacht.com.au/web) founded by Rod McCubbin, Cheltenham VIC 3192, provides race 

management and scoring software to the Australian sailing community.  Race results for many Victorian and 

interstate yacht clubs are processed using TopYacht software. 
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Symbol Meaning Definition 

M corrected time position of mark boat  

MAD Median Absolute Deviation  

n number of yachts in the race  

N 
number of races in a yacht race series or number 

of races in an averaging process 
 

p mark boat place in a fleet of 100 yachts  

PI performance indicator PI BCH AHC= −  
PIF Performance Indicator Filter  

PM performance multiplier  

R range of corrected times (positive quantity)  

S sum of corrected times  

x handicap error  

z a numeric value between zero and PI±  CHC AHC z= +  
 

Many of the formula in the text have subscripts denoting either a yacht in a race fleet of n yachts, or a race 

in a series of N races.  For example, 
k

k

SCT
BCH

ET
=  where the subscript k denotes the kth boat in a fleet of 

1,2, 3, ,k n= …  yachts in a race.  If we are discussing the kth yacht’s back calculated handicap in the jth race 

of a series 1,2, ,j N= …  then we might write ,
,

j

k j

k j

SCT
BCH

ET
=  and if these were tabulated in an array of 

rows and columns then there would be 1,2, 3, ,k n= …  rows and 1,2, ,j N= …  columns.  For clarity, we have 

mostly avoided the use of double subscripts but care should be taken in relating the subscripts to the 

context, and we have used subscript k to denote a yacht in a particular race, and j to denote a race in a 

series of N races. 

Standard Corrected Time STC and Back Calculated Handicap BCH: Usual 

Methods 

There are several ways of determining the Standard Corrected Time STC – hence defining the mark boat, 

real or mythical – and then determining the Back Calculated Handicaps BCH.  We describe two 

representative methods that are applied to the corrected times of Race 1a of our Yacht Race Series 

(Appendix B) and shown in Table 1. 

 

 

 

Yacht 

 

Elapsed Time 

ET 

Allocated

Handicap 

AHC 

 

Corrected Time 

CT (sec) 

 

 

Place 

Back Calculated 

Handicap BCH 

World Sailing   TopYacht 

Sierra Chainsaw 1:18:59 (4739 sec) 0.930 4407.270 1 0.977 0.955 

Joust 1:18:40 (4720) 0.935 4413.200 2 0.980 0.959 

Scarlett Runner II 1:19:28 (4768) 0.935 4458.080 3 0.971 0.949 

Wicked 1:21:27 (4887) 0.926 4525.362 4 0.947 0.926 

Bandit 1:23:33 (5013) 0.910 4561.830 5 0.923 0.903 

Dream 1:21:47 (4907) 0.948 4651.836 6 0.943 0.922 

Esprit 1:26:58 (5218) 0.895 4670.110 7 0.887 0.867 

Conquest 1:26:30 (5190) 0.914 4743.660 8 0.892 0.872 

Dark and Stormy 1:34:59 (5699) 0.885 5043.615 9 0.812 0.794 

Niche DNS      

 

Table 1.  Race 1a of the Yacht Race Series (Appendix B).  Yachts shown in 

corrected time order.  Time in hour (h), minute (m) second (s) format as h:mm:ss 
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Method [1]  World Sailing in their document International Empirical Handicap Scheme for Yachts (World 

Sailing 2016), say that a standard corrected time SCT of the fleet be the average of the corrected times of 

the reduced fleet where the reduced fleet excludes the lowest 20% and highest 40% of the race fleet based on 

their corrected times.  In the case of Race 1a, where 9n =  yachts, Conquest and Dark and Stormy are 

excluded, as are Sierra Chainsaw, Joust, Scarlett Runner II and Wicked.  The reduced fleet is Bandit, 

Dream and Esprit and the standard corrected time is 

 
4561.830 4651.836 4670.110

4627.925 sec
3

SCT
+ +

= =  

This is the corrected time of the mark boat (in this case, not a real yacht) and is used to calculate the new 

handicaps for the fleet from equation (3).  The new handicaps are shown in Table 1 in the column headed 

World Sailing and are rounded to 3 decimal places. 

Method [2]  TopYacht in the documentation of their Performance Handicap System suggest that a mark 

boat be selected by the race management and note that from experience “the 45% boat” gives acceptable 

results, where the 45% boat is the yacht finishing in 45th place on corrected time in a fleet of 100 yachts.   

We define the mark boat as the yacht finishing in Mth position on corrected time where the finish order 

place M is given by 

 round
100

p
M n

 = ×    
 (4) 

where ( )round x  denotes the round function that rounds x to the nearest integer (if two integers are 

available the one furthest from zero is selected), n is the number of yachts in the race and p is the finish 

place of the mark boat in a 100 yacht fleet.  For the 45% boat 45p = . 

The standard corrected time SCT is now taken to be the corrected time of the mark boat (the yacht finishing 

in Mth position on corrected time). 

For Race 1a in Table 1 above, TopYacht’s 45% boat will have a finish order place ( )round 9 0.45 4M = × =  

and the mark boat will be Wicked, the 4th boat on corrected time of 4525.362 sec.  This becomes the SCT 

and new handicaps for the fleet are calculated from (3) and are shown in Table 1 in the column headed 

TopYacht (rounded to 3 decimal places). 

Note that the BCH values in Table 1 in the TopYacht column will not be the same as those shown in Race 1 

of Appendix A because the race above does not include the yacht Cadibarra 8.  This demonstrates the 

dependence between the yachts in the race, the SCT and the BCH’s. 

Standard Corrected Time: A New Method 

Of course, it would be extremely rare (and probably has never happened in practice) for all the corrected 

times in a particular race to be identical.  This would imply that handicaps were derived from a perfect 

system of rules and yachts were sailed at their optimum in the prevailing conditions.  But, nevertheless, we 

could consider the following two statements. 

A If every yacht sailed to their true handicap H then their corrected times would be identical. 

B The range of corrected times in an actual race is the sum of each yacht’s handicap error x. 

Considering statement A.  If all the corrected times are the same, call this value the standard corrected time 

SCT and define a yacht’s true handicap H as 

 H AHC Hδ= +  (5) 

where AHC is the yacht’s allocated handicap derived from a set of rules and Hδ  is a small unknown 

correction.  Now, we can write, for any individual yacht 



Notes on Performance Handicap Systems in Yachting 

 

 

5 

 

 

( )ET AHC H SCT

ET AHC ET H SCT

δ

δ

× + =
× + × =  (6) 

and defining a yacht’s handicap error x as  

 x ET Hδ= ×  (7) 

Now using (1) we may write an observation equation for each of the 1,2, 3, ,k n= …  yachts in the race as 

 
k kx SCT CT− = −  (8) 

And, from statement B we may write a single additional constraint equation 

 1 2 nx x x R+ + + =⋯  (9) 

where { } { }max minR CT CT= −  is a positive quantity equal to the range of the corrected times and 

{ }CT  denotes the set of corrected times of the yachts in a race. 

It turns out (see Appendix C) that the system of n observation equations (8) and the single constraint 

equation (9) can be solved to give the standard corrected time SCT as 

 ( )1
SCT S R

n
= +  (10) 

where S and R are the sum and range of the corrected times respectively. 

The back calculated handicaps 
kBCH  are calculated using (3). 

[Appendix C also shows that the true handicap 
k kH BCH=  and the small correction to the true handicap is 

k k k kH BCH AHC PIδ = − = ] 

As an example, we will use Race 1a from our Yacht Race Series in Appendix B. 

 

 

 

Yacht 

 

Elapsed Time 

ET 

Allocated

Handicap 

AHC 

 

Corrected Time 

CT (sec) 

 

 

Place 

Back Calculated 

Handicap 

BCH 

Sierra Chainsaw 1:18:59 (4739 sec) 0.930 4407.270 1 0.987 

Joust 1:18:40 (4720) 0.935 4413.200 2 0.991 

Scarlett Runner II 1:19:28 (4768) 0.935 4458.080 3 0.981 

Wicked 1:21:27 (4887) 0.926 4525.362 4 0.957 

Bandit 1:23:33 (5013) 0.910 4561.830 5 0.933 

Dream 1:21:47 (4907) 0.948 4651.836 6 0.954 

Esprit 1:26:58 (5218) 0.895 4670.110 7 0.897 

Conquest 1:26:30 (5190) 0.914 4743.660 8 0.902 

Dark and Stormy 1:34:59 (5699) 0.885 5043.615 9 0.821 

Niche DNS     

 

Table 2.  Race 1a of the Yacht Race Series (Appendix B).  Yachts shown in corrected time order. 

From Table 2, the range of corrected times 5043.615 4407.270 636.345 secR = − =  and the sum of the 

corrected times is 41474.963 secS =  and using equation (10) 

 ( )1
4679.034 secSCT S R

n
= + =   
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Back calculated handicaps are computed using (3) and are tabulated in Table 2.  For example, the 6th yacht 

Dream’s BCH is 

 6
6

4679.034
0.953543 0.954

4907

SCT
BCH

ET
= = = ≈  

The Calculated Handicap CHC 

As we outlined in the Introduction, the third (and last) step in the production of a new handicap is the 

calculated handicap CHC, and if this doesn’t appear to be an anomalous result then the CHC becomes the 

yacht’s allocated handicap AHC for her next race. 

There are many ways of determining the CHC and TopYacht (2018, 2019) describe or mention the following 

methods: Weighted Average; Exponential Average; Place Based Handicapping; Place Based Exponential 

Handicapping; Trend Biased Average and Boat Performance Ratio.  World Sailing (2016) describes a system 

of Weighted Performance Indicators in calculating the CHC.  

We will review three methods; Weighted Average, Exponential Average, and Weighted 

Performance Indicators that represent some of the possible methods listed above and Appendix D gives 

some useful background information.  In addition, a fourth and new method of determining the CHC is 

described that we call a Performance Indicator Filter and Appendix E has some background information 

applicable to this topic.  But first we set out the rationale for the general rule for calculating a yacht’s new 

handicap. 

The difference between a yacht’s allocated handicap AHC (the handicap before the race) and 

the back calculated handicap BCH (the handicap it would have had if its corrected time 

equalled the standard corrected time of the race) is its performance indicator PI defined by 

World Sailing (2016) as 

 
k k kPI BCH AHC= −  (11) 

noting here that 
k kPI Hδ=  in this paper [see Appendix C, equation (38)] and the subscript 

k denotes the kth boat in the fleet of n yachts. 

If the conditions of the race were reasonable and unchanging and every yacht was sailed to its 

optimum then PI’s simply reflect handicap errors, and in this perfect situation, each yacht’s 

new handicap would simply be its back calculated handicap, i.e., 
k kCHC BCH= .  If this 

perfect situation existed for the next race then all the PI’s would be zero and each yacht’s new 

handicap would be unchanged, i.e., 
k kCHC AHC= .  So, we may establish a general rule for 

a yacht’s calculated handicap 

 k k kCHC AHC z= +  (12) 

where 
kAHC  denotes the allocated handicap for the race and 

kz  is a numeric value between 

zero and 
kPI±  that is a function of the yacht’s AHC prior to the race and BCH after the race. 

The Calculated Handicap: Weighted Performance Indicators (World Sailing) 

World Sailing (2016) describe a system of weighted performance indicators that we summarize here. 

• After a race, back calculated handicaps BCH are calculated using (3). 

• Performance indicators PI are calculated using (11). 

• Performance multipliers PM are selected from Table 3 
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Races completed Portion of PI Multiplier PM 

1 All 1 

2 Half 0.5 

3 One third 0.333333 

4 One quarter 0.25 

5 One fifth 0.2 

Greater than 5 One fifth 0.2 

Table 3.  Performance Multipliers, World Sailing (2016) 

• Calculate new handicaps using 

 ( )k k kCHC AHC PM PI= + ×  (13) 

We can see here that the ‘weighted performance indicator’ is 
1

Race No. kPI×  up to and including Race 5 and 

the weighted performance indicator is 5kPI  for all races after Race 5. 

The weighted performance indicator is the variable kz  in the general rule (12) 

The Calculated Handicap: Weighted Average (TopYacht) 

TopYacht (2019) describe a system they call ‘weighted average’ to obtain the calculated handicap from the 

handicaps of the race just completed and from races prior to that.  We summarise their system as 

• Select the number of races N that are to be used in the averaging process. 

• Calculated handicaps CHC are given by 

 

( ) 1
1

1

1
for 

1
for 

k

j
j

k k N

j
j k

N k AHC BCH k N
N

CHC

BCH k N
N

=
− +

=

        − + <        =  ≥

∑

∑
 (14) 

Where k is the race number, the subscript k denotes the handicap for the kth race, 1AHC  is the allocated 

handicap for the 1st race and jBCH  is the back calculated handicap for the jth race. 

Suppose that 4N =  then the calculated handicaps for races 1,2,3,…, etc. are: 

Race 1 ( ) ( ){ }
1

1 1 1 1
1

1 1
4 1 3

4 4
j

j

CHC AHC BCH AHC BCH
=

    = − + = +     
∑  

Race 2 ( ) ( ){ }
2

2 1 1 1 2
1

1 1
4 2 2

4 4j
j

CHC AHC BCH AHC BCH BCH
=

    = − + = + +     
∑  

Race 3 ( ) { }
3

3 1 1 1 2 3
1

1 1
4 3

4 4
j

j

CHC AHC BCH AHC BCH BCH BCH
=

    = − + = + + +     
∑  

Race 4 ( )
1

4 4 3 2 1
4

1 1

4 4j
j

CHC BCH BCH BCH BCH BCH
=

= = + + +∑  

Race 5 ( )
2

5 5 4 3 2
5

1 1

4 4j
j

CHC BCH BCH BCH BCH BCH
=

= = + + +∑  

etc. 
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When the race number is equal to or greater than N, the calculated handicap is just a simple moving average 

and there is no ‘weighting’ involved in these calculations.  Appendix D has some useful information on 

moving averages and weighted averages.  By studying the sequence of calculated handicaps above and 

understanding that the allocated handicap is the previous calculated handicap we may write 

 ( )1

1
  for k k k k NCHC AHC BCH BCH k N

N
− += + − >  (15) 

And the variable kz  in the general rule (12) is ( )1

1
 for k k k Nz BCH BCH k N

N
− += − > . 

The Calculated Handicap: Exponential Average (TopYacht) 

TopYacht (2019) describe a method they call ‘exponential average’ to obtain the calculated handicap.  We 

summarise their system as 

• Select the gain G 

• If 1G ≥  is an integer, say 1,2, 3,…  then the calculated handicap is 

 
1 1

  for 1
G

CHC BCH AHC G
G G

 − = × +  ≥   
 (16) 

• If 0G ≥  is a percentage, say 10% (G = 10), 20% (G = 20), … then the calculated handicap is 

 
100

  for 0 100
100 100

G G
CHC BCH AHC G

 − = × +  ≤ ≤   
 (17) 

If the gain G = 3 then  
1 2

3 3
CHC BCH AHC= +  (18) 

If the gain G = 33.33% then 
33.33 66.67

100 100
CHC BCH AHC= +  

It is very common, in Victorian yachting, to use a gain G = 3. 

Notes:  The derivation of (16) is shown in Appendix D – see equation (52) – and the use of the 

word ‘gain’ is probably a little misleading.  A better expression might be 

( ) ( )1   for 0 1CHC BCH AHCα α α= + − < ≤  – see Appendix D, equation (51) – and 

successive CHC’s are terms in the Exponentially Weighted Moving Average (EWMA) defined by 

Hunter (1986).  Equation (16) is really a recurrence formula for predicting or forecasting the next 

allocated handicap given the current back calculated handicap and allocated handicap.  A 

weighting factor 1 Gα =  (see above) is used and since each new prediction is a function of prior 

allocated and back calculated handicaps – each with their own weighting factors – then the 

current prediction is in fact a summation of prior back calculated handicaps each multiplied by 

powers of ( )1 α−  that get exponentially smaller as the number of prior values increases.  This 

process is known as exponential smoothing and is often used in financial analysis and prediction.  

Appendix D has an example of exponential smoothing applied to the fluctuations of the exchange 

rate between US dollars and Australian dollars. 

By a simple rearrangement of (16) we can write 

 ( )1 k
k k k k k

PI
CHC AHC BCH AHC AHC

G G
= + − = +  (19) 

And for the gain G = 3 (very common in Victorian yachting) then 

 1
3k k kCHC AHC PI= +  
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And the variable z in the general rule (12) is 1
3k kz PI= . 

So, this means that after each race, the calculated handicap is equal to the allocated handicap plus one-third 

of the performance indicator 
k k kPI BCH AHC= − . 

The Calculated Handicap: A New Method 

We propose a new method of determining the calculated handicap that we call a Performance Indicator 

Filter (PIF) that gives the z-value for yacht k in race j of a series as 

 ( ), , 1 , , 1 ,0 for , 0 and 0k j k j k j k j kz z K PI z k j z− −= + − > =  (20) 

Where , , ,k j k j k jPI BCH AHC= −  is the yacht’s performance indicator for the jth race and K is a constant. 

A yacht’s calculated handicap jCHC  for race j of the series is then given by (12) and as this will be her 

allocated handicap for the next race we may write 

 , 1 , ,k j k j k jAHC AHC z+ = +  (21) 

From an analysis of the yacht Dream’s performance in the Race Series (see Appendix B) we have determined 

that a value of 2 5K =  gives reasonable z-values.  Appendix E has an explanation of our Performance 

Indicator Filter and how it is linked to a Kalman Filter which is a mathematical estimation process that is 

widely used in navigation. 

As an example of the calculation of a yacht’s z-values we use Dream’s PI values in the Race Series scored 

using PIF and the new method for SCT (see Appendix B, Table B19) 

 0.006 0.082 0.074 0.006 0.012 0.027 0.044PI  = − − −    (22) 

Using (20) and (21) with 2 5K =  and the PI values (22) with Dream’s allocated handicap in race 1j =  as 

0.948 gives the following results 

 

( )
( )
( )

,1 ,1 ,2

,2 ,2 ,3

,3 ,3 ,4

1, 0.006, 0 2 5 0.006 0 0.0024 0.948 0.002 0.950

2, 0.082, 0.0024 2 5 0.082 0.0024 0.0342 0.950 0.034 0.984

3, 0.074, 0.0342 2 5 0.074 0.0342 0.0501 0.984 0.

k k k

k k k

k k k

j PI z AHC

j PI z AHC

j PI z AHC

= = = + − = = + =

= = = + − = = + =
= = = + − = = + 050 1.034

etc.

=
 

tabulated as 

j 
,k jPI  ,k jz  ,k jAHC  

1  0.006  0.002 0.948 

2  0.082  0.034 0.984 

3  0.074  0.050 1.034 

4  0.006  0.032 1.066 

5  -0.012  0.015 1.081 

6  -0.027  -0.002 1.079 

7  -0.044  -0.017 1.062 

Table 4.  PI values, z-values computed from a Performance Indicator Filter 

and allocated handicaps for Dream for the seven-race series 

A plot of Dream’s PI values and the PIF z-values are shown in Figure 1, and since 

, 1 , ,k j k j k jAHC AHC z+ = + , Dream’s handicap will be increasing when 0z >  and decreasing when 0z < , 

i.e., increasing when the solid line is above zero and decreasing when it’s below zero. 
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Figure 1.  Dream’s PI values (squares and dashed line) and PIF z-values 

(crosses and solid line).  Note that 2
,1 ,15k kz PI=  

Figure 2 shows Dream’s PI values, PIF z-values and the values 1
3
PI .  TopYacht scoring has 

1
, 1 , ,3k j k j k jAHC AHC PI+ = +  and this figure shows the relationship between increasing and decreasing 

handicaps using TopYacht and PIF scoring. 

 

Figure 2.  Dream’s PI values (squares and dashed line), PIF z-values (crosses 

and solid line) and 1
3
PI  values (circles and dotted line).  Note that 

2
,1 ,15k kz PI=  
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Discussion 

The four basic components of a Performance Handicap System are 

(i) Calculating the corrected time CT of each yacht in the race from k k kCT ET AHC= ×  and 

determining the winner with the least corrected time. 

(ii) Determining the standard corrected time STC (corrected time of the mark boat – real or mythical) 

for the race. 

(iii) Calculating the back calculated handicap 
kBCH  and performance indicator 

k k kPI BCH AHC= −  

for each yacht in the race. 

(iv) Determining the allocated handicap for yacht k for the next race j in the series from 

, 1 , ,k j k j k jAHC AHC z+ = +  where ,k jz  is some function of the performance indicator for each yacht 

in race j. 

We have reviewed several methods of determining the STC and have explained a new method we are 

proposing that is: ( )j j jSCT S R n= +  where 
jS  and 

jR  are the sum and range of the corrected times 

respectively and n is the number of yachts in race j.  The development of this simple formula is set out in 

Appendix C. 

We have reviewed several methods of determining the calculated handicap 
kCHC  of yacht k and have shown 

that they can be described by a general formula: 
k k kCHC AHC z= +  and since the calculated handicap of 

race j is the allocated handicap of the next race then , 1 , ,k j k j k jAHC AHC z+ = +  where ,k jz  is a function of 

the performance indicator of yacht k in race j.  And we have proposed a new method of calculating the z-

value of yacht k in race j as: ( ), , 1 , , 1 ,0 for , 0 and 0k j k j k j k j kz z K PI z k j z− −= + − > =  that we have called a 

Performance Indicator Filter (PIF).  This new method of calculating the z-values is a simplification of a 

Kalman Filter which is a mathematical estimation process.  A Kalman Filter is really a sequence of equations 

that processes measurements that are linked to the ‘state’ of a ‘system’.  In our case, the measurements are 

the performance indicators PI, the system is just a single entity, the PIF, and its state is the value z.  As 

measurements are processed one after the other by the filter the state of the system changes and can be 

monitored.  In Appendix E we have studied the output of a Kalman Filter to determine z-values given PI-

values as measurements and reduced the sequence of operations to a single equation (20), the PIF, containing 

a constant K.  We have taken 2 5K =  to be a reasonable value based on an analysis of the yacht Dream 

over the Race Series in Appendix B and we are confident that this value is suitable for the PIF applied to 

other yachts. 

To test our two new methods the Race Series of Appendix B was scored using: 

(i) TopYacht with a 45% yacht as the mark boat and allocated handicaps 

1
, 1 , ,3k j k j k jAHC AHC PI+ = +  and 

(ii) Performance Indicator Filter (PIF) ( ), , 1 , , 1 ,0 for , 0 and 0k j k j k j k j kz z K PI z k j z− −= + − > =  

with 2 5K =  and ( )j j jSCT S R n= + , with allocated handicaps , 1 , ,k j k j k jAHC AHC z+ = + . 

The overall results for the series and series placings for the Best 5 of the 7-race series are shown in Tables B9 

(TopYacht) and B18 (PIF) and are repeated here as Tables 5 and 6. 
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Yacht 

Race Placings Total 

(Best 5) 

Series 

Place R1a R2a R3a R4a R6a R7a R10a 

Dream 6 1 1 2 1 3 8 8 1 

Sierra Chainsaw 1 6 7 1 2 12 4 14 2 

Esprit 7 3 5 6 3 2 9 19 3 

Joust 2 2 8 10 10 7 1 20 4 

Wicked 4 4 2 8 5 8 5 20 5 

Niche 12 12 9 3 4 4 3 23 6 

Bandit 5 5 3 7 6 5 6 24 7 

Scarlett Runner II 3 12 10 4 7 12 2 26 8 

Conquest 8 12 4 9 8 1 7 28 9 

Dark and Stormy 9 12 6 5 9 6 11 35 10 

 

Table 5.  Yacht Race Series (TopYacht scoring): Race Placings; Total Points (Best 5); Overall Place 

DNS = 12, RET = 11 

 

 

 

Yacht 

Race Placings Total 

(Best 5) 

 

Place R1a R2a R3a R4a R6a R7a R10a 

Sierra Chainsaw 1 6 8 3 2 12 3 15 1 

Niche 12 12 6 2 1 4 5 18 2 

Joust 2 2 9 10 10 6 1 20 3 

Dream 6 1 1 5 9 8 8 21 4 

Esprit 7 3 7 6 3 2 9 21 5 

Dark and Stormy 9 12 5 1 4 3 11 22 6 

Wicked 4 4 3 9 8 7 4 22 7 

Bandit 5 5 2 8 7 5 6 23 8 

Scarlett Runner II 3 12 10 4 5 12 2 24 9 

Conquest 8 12 4 7 6 1 7 25 10 

 

Table 6.  Yacht Race Series (PIF scoring 2 5K = ): Race Placings; Total Points (Best 5); Overall Place 

DNS = 12, RET = 11 

 

For TopYact scoring (Table 5) the point score range for the 10 entrants is 35 8 27− = .  The first 3 yachts 

have points 8, 14 and 19; the middle 4 yachts 20, 20, 23 and 24; and the bottom 3 have points 26, 28 and 35.  

Dream wins 3 races and Sierra Chainsaw 2 races.  The other two race wins are by Joust and Conquest. 

For PIF scoring (Table 6) the point score range for the 10 entrants is 25 15 10− = .  The first 3 yachts have 

points 15, 18 and 20; the middle 4 yachts 21, 21, 22 and 22; and the bottom 3 have points 23, 24 and 25.  

Dream wins 2 races and the other 5 races are wins by Sierra Chainsaw, Niche, Joust, Dark and Stormy and 

Conquest. 

It would appear that PIF scoring [with ( )j j jSCT S R n= + ] gives series point scores with a much smaller 

range between first and last and much tighter groupings in the first-3, the middle-4 and the bottom-3 groups.  

Indeed, the points range in the middle-4 group is one point, and in the bottom-3 group it is 2 points.  Three 

yachts; Niche, Dark and Stormy, and Dream are the most affected by the two scoring methods.  Dark and 

Stormy and Niche both rising 4 places and Dream falling 3 when scored using PIF.  Esprit and Wicked fall 

by 2 places; Bandit, Scarlett Runner II and Conquest fall by 1 place; and Joust and Sierra Chainsaw rise by 

1 place. 
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The scoring of the Race Series using the two methods was done using a program written in GNU Octave3 

and the required information for each yacht is: 

TopYacht – Elapsed time and allocated handicap,  

PIF – Elapsed time, allocated handicap and z-value from previous race ( , 1 0k jz − =  for race 1j = ) 

Our new method of scoring requires an additional piece of information (the prior z-value) but this shouldn’t 

be a trouble if the spreadsheets are linked to a race series master sheet containing handicap information that 

can be automatically updated. 

Conclusion 

This paper provides a useful summary of the principles and operation of a Performance Handicap System in 

yachting and reviews some current methods of scoring as well as introducing new methods of calculating the 

standard corrected time STC and allocated handicaps AHC using a Performance Indicator Filter.  In 

addition, examples of the calculations required have been given and the development of formula set down 

and supported with technical information in several appendices.  References have been provided for the 

interested reader.   

We believe our new method of scoring deserves further investigation and study and we hope that it might be 

taken up by a yacht club or several yacht clubs and compared with existing methods. 

 

 

  

 
3 GNU Octave is a high-level language, primarily intended for numerical computations.  It provides a convenient 

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical 

experiments using a language that is mostly compatible with Matlab.  GNU Octave is freely redistributable software from 

the Free Software Foundation 
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APPENDIX A 

2018-19 SUMMER AGGREGATE SANDRINGHAM YACHT CLUB 

Division 1, Performance Handicap System (PHS) 

https://www.syc.com.au/raceresults/2018/klbt/agg/series.htm [accessed 18-Feb-2020] 

Race Results produced by TopYacht 
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APPENDIX B 

The Yacht Race Series 

The Sandringham Yacht Club (SYC) 2018-19 Summer Aggregate, Division 1, Performance Handicapping 

System (PHS) was a 10-race series with published results showing race and handicapping details for races 

1,2,3,4,6,7 and 10 (see Appendix A).  For these seven races we have selected the 10 yachts that completed 

at least five of these races: Bandit, Conquest, Dark and Stormy, Dream, Esprit, Joust, Niche, Scarlett 

Runner II, Sierra Chainsaw and Wicked.  Each yacht’s elapsed times ET have been extracted from the 

published race results and a yacht’s initial handicap is taken as the allocated handicap AHC for that race 

shown in the race results; these data form our yacht race series and are shown below. 

 

 

Yacht 

Initial 

Handicap 

Elapsed Time ET 

R1a R2a R3a R4a R6a R7a R10a 

Bandit 0.910 1:23:33 2:53:45 1:49:01 1:13:59 1:39:24 1:44:25 1:31:52 

Conquest 0.914 1:26:30 DNS 1:51:07 1:15:19 1:41:19 1:41:26 1:32:40 

Dark and Stormy 0.885 1:34:59 DNS 1:58:50 1:17:19 1:46:58 1:52:29 RET 

Dream 0.948 1:21:47 2:33:06 1:38:13 1:06:23 1:28:47 1:34:20 1:25:34 

Esprit 0.895 1:26:58 2:52:06 1:54:36 1:15:30 1:39:49 1:43:30 1:38:32 

Joust 0.935 1:18:40 2:39:23 1:48:14 1:12:20 1:38:30 1:43:09 1:24:33 

Niche 0.900 DNS DNS 1:54:53 1:13:00 1:38:20 1:44:08 1:30:35 

Scarlett Runner II 0.935 1:19:28 DNS 1:52:24 1:11:07 1:36:45 DNS 1:25:01 

Sierra Chainsaw 0.930 1:18:59 2:51:11 1:51:12 1:10:51 1:35:17 DNS 1:28:52 

Wicked 0.926 1:21:27 2:45:41 1:45:44 1:12:16 1:36:24 1:43:15 1:29:33 

 

Table B1.  Yacht Race Series elapsed times and initial Allocated Handicaps 

Elapsed Times are shown in hour (h), minute (m), second (s) format as h:mm:ss 

DNS = Did Not Start, RET = Retired 

Race Series Scored using TopYacht 

The following tables show the results for each of the seven races in the series using TopYacht scoring with 

45% mark boat [see equation (4)] and 1 2 1
3 3 3

CHC BCH AHC AHC PI= + = +  where PI BCH AHC= −  

 

Yacht ET AHC CT (sec) Place BCH PI CHC 

Sierra Chainsaw 1:18:59 0.930 4407.270 1 0.955 0.025 0.938 

Joust 1:18:40 0.935 4413.200 2 0.959 0.024 0.943 

Scarlett Runner II 1:19:28 0.935 4458.080 3 0.949 0.014 0.940 

Wicked 1:21:27 0.926 4525.362 4 0.926 0.000 0.926 

Bandit 1:23:33 0.910 4561.830 5 0.903 -0.007 0.908 

Dream 1:21:47 0.948 4651.836 6 0.922 -0.026 0.939 

Esprit 1:26:58 0.895 4670.110 7 0.867 -0.028 0.886 

Conquest 1:26:30 0.914 4743.660 8 0.872 -0.042 0.900 

Dark and Stormy 1:34:59 0.885 5043.615 9 0.794 -0.091 0.855 

Niche DNS   12    

 

Table B2.  Race 1a: Mark Boat is Wicked. 
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Yacht ET AHC CT (sec) Place BCH PI CHC 

Dream 2:33:06 0.939 8625.654 1 0.996 0.057 0.958 

Joust 2:39:23 0.943 9017.909 2 0.957 0.014 0.948 

Esprit 2:52:06 0.886 9148.836 3 0.886 0.000 0.886 

Wicked 2:45:41 0.926 9205.366 4 0.920 -0.006 0.924 

Bandit 2:53:45 0.908 9465.900 5 0.878 -0.030 0.898 

Sierra Chainsaw 2:51:11 0.938 9634.198 6 0.891 -0.047 0.922 

Scarlett Runner II DNS   12    

Conquest DNS   12    

Dark and Stormy DNS   12    

Niche DNS   12    

 

Table B3.  Race 2a: Mark Boat is Esprit. 

 

 
Yacht ET AHC CT (sec) Place BCH PI CHC 

Dream 1:38:13 0.958 5645.494 1 1.034 0.076 0.983 

Wicked 1:45:44 0.924 5861.856 2 0.960 0.036 0.936 

Bandit 1:49:01 0.898 5873.818 3 0.931 0.033 0.909 

Conquest 1:51:07 0.900 6000.300 4 0.914 0.014 0.905 

Esprit 1:54:36 0.886 6092.136 5 0.886 0.000 0.886 

Dark and Stormy 1:58:50 0.855 6096.150 6 0.854 -0.001 0.855 

Sierra Chainsaw 1:51:12 0.922 6151.584 7 0.913 -0.009 0.919 

Joust 1:48:14 0.948 6156.312 8 0.938 -0.010 0.945 

Niche 1:54:53 0.900 6203.700 9 0.884 -0.016 0.895 

Scarlett Runner II 1:52:24 0.940 6339.360 10 0.903 -0.037 0.928 

 

Table B4.  Race 3a: Mark Boat is Esprit 

 

 

Yacht ET AHC CT (sec) Place BCH PI CHC 

Sierra Chainsaw 1:10:51 0.919 3906.669 1 0.933 0.014 0.924 

Dream 1:06:23 0.983 3915.289 2 0.996 0.013 0.987 

Niche 1:13:00 0.895 3920.100 3 0.906 0.011 0.899 

Scarlett Runner II 1:11:07 0.928 3959.776 4 0.930 0.002 0.929 

Dark and Stormy 1:17:19 0.855 3966.345 5 0.855 0.000 0.855 

Esprit 1:15:30 0.886 4013.580 6 0.876 -0.010 0.883 

Bandit 1:13:59 0.909 4035.051 7 0.894 -0.015 0.904 

Wicked 1:12:16 0.936 4058.496 8 0.915 -0.021 0.929 

Conquest 1:15:19 0.905 4089.695 9 0.878 -0.027 0.896 

Joust 1:12:20 0.945 4101.300 10 0.914 -0.031 0.935 

 

Table B5.  Race 4a: Mark Boat is Dark and Stormy. 
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Yacht ET AHC CT (sec) Place BCH PI CHC 

Dream 1:28:47 0.987 5257.749 1 1.009 0.022 0.994 

Sierra Chainsaw 1:35:17 0.924 5282.508 2 0.940 0.016 0.929 

Esprit 1:39:49 0.883 5288.287 3 0.897 0.014 0.888 

Niche 1:38:20 0.899 5304.100 4 0.911 0.012 0.903 

Wicked 1:36:24 0.929 5373.336 5 0.929 0.000 0.929 

Bandit 1:39:24 0.904 5391.456 6 0.901 -0.003 0.903 

Scarlett Runner II 1:36:45 0.929 5392.845 7 0.926 -0.003 0.928 

Conquest 1:41:19 0.896 5446.784 8 0.884 -0.012 0.892 

Dark and Stormy 1:46:58 0.855 5487.390 9 0.837 -0.018 0.849 

Joust 1:38:30 0.935 5525.850 10 0.909 -0.026 0.926 

 

Table B6.  Race 6a: Mark Boat is Wicked. 

 

 
Yacht ET AHC CT (sec) Place BCH PI CHC 

Conquest 1:41:26 0.892 5428.712 1 0.927 0.035 0.904 

Esprit 1:43:30 0.888 5514.480 2 0.909 0.021 0.895 

Dream 1:34:20 0.994 5626.040 3 0.997 0.003 0.995 

Niche 1:44:08 0.903 5641.944 4 0.903 0.000 0.903 

Bandit 1:44:25 0.903 5657.295 5 0.901 -0.002 0.902 

Dark and Stormy 1:52:29 0.849 5729.901 6 0.836 -0.013 0.845 

Joust 1:43:09 0.926 5731.014 7 0.912 -0.014 0.921 

Wicked 1:43:15 0.929 5755.155 8 0.911 -0.018 0.923 

Sierra Chainsaw DNS   12    

Scarlett Runner II DNS   12    

 

Table B7.  Race 7a: Mark Boat is Niche. 

 

 

Yacht ET AHC CT (sec) Place BCH PI CHC 

Joust 1:24:33 0.921 4672.233 1 0.976 0.055 0.939 

Scarlett Runner II 1:25:01 0.928 4733.728 2 0.971 0.043 0.942 

Niche 1:30:35 0.903 4907.805 3 0.911 0.008 0.906 

Sierra Chainsaw 1:28:52 0.929 4953.428 4 0.929 0.000 0.929 

Wicked 1:29:33 0.923 4959.279 5 0.922 -0.001 0.923 

Bandit 1:31:52 0.902 4971.824 6 0.899 -0.003 0.901 

Conquest 1:32:40 0.904 5026.240 7 0.891 -0.013 0.900 

Dream 1:25:34 0.995 5108.330 8 0.965 -0.030 0.985 

Esprit 1:38:32 0.895 5291.240 9 0.838 -0.057 0.876 

Dark and Stormy RET   11    

 

Table B8.  Race 10a: Mark Boat is Sierra Chainsaw. 
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The race finish placings for the yachts in the race series are aggregated in Table B9 and the total of the best 

five placings are used to decide the Series Place of each yacht.  Yachts that did not start (DNS) a race are 

given a race place of 12 (two more than the number of entrants in the series) and yachts that retired (RET) 

from a race a given a race place of 11 (one more than the number of entrants in the series). 

 
 

Yacht 

Race Placings Total 

(Best 5) 

Series 

Place R1a R2a R3a R4a R6a R7a R10a 

Dream 6 1 1 2 1 3 8 8 1 

Sierra Chainsaw 1 6 7 1 2 12 4 14 2 

Esprit 7 3 5 6 3 2 9 19 3 

Joust 2 2 8 10 10 7 1 20 4 

Wicked 4 4 2 8 5 8 5 20 5 

Niche 12 12 9 3 4 4 3 23 6 

Bandit 5 5 3 7 6 5 6 24 7 

Scarlett Runner II 3 12 10 4 7 12 2 26 8 

Conquest 8 12 4 9 8 1 7 28 9 

Dark and Stormy 9 12 6 5 9 6 11 35 10 

 

Table B9.  Yacht Race Series (TopYacht scoring): Race Placings; Total Points (Best 5); Overall Place 

DNS = 12, RET = 11 

 

The Performance Indicators PI AHC BCH= −  for each race of the series are shown in Table B10 together 

with two other values denoted MAD and σ̂ .  These are tabulated for each yacht in the series (right-most 

columns) and for each race (last two rows).  MAD is Median Absolute Deviation and ( )ˆ 1.4826 MADσ =  is 

an estimate of the standard deviation of the PI’s (see Appendix E).  Both are measures of variation of the 

data and are used in the development of a Performance Indicator Filter (see Appendix D) 

 
 

Yacht 

Performance Indicator PI Series 

R1a R2a R3a R4a R6a R7a R10a MAD σ̂  

Bandit -0.007 -0.030 0.033 -0.015 -0.003 -0.002 -0.003 0.004 0.006 

Conquest -0.042 DNS 0.014 -0.027 -0.012 0.035 -0.013 0.020 0.030 

Dark and Stormy -0.091 DNS -0.001 0.000 -0.018 -0.013 RET 0.010 0.015 

Dream -0.026 0.057 0.076 0.013 0.022 0.003 -0.030 0.025 0.037 

Esprit -0.028 0.000 0.000 -0.010 0.014 0.021 -0.057 0.017 0.025 

Joust 0.024 0.014 -0.010 -0.031 -0.026 -0.014 0.055 0.023 0.034 

Niche DNS DNS -0.016 0.011 0.012 0.000 0.008 0.013 0.019 

Scarlett Runner II 0.014 DNS -0.037 0.002 -0.003 DNS 0.043 0.017 0.025 

Sierra Chainsaw 0.025 -0.047 -0.009 0.014 0.016 DNS 0.000 0.018 0.027 

Wicked 0.000 -0.006 0.036 -0.021 0.000 -0.018 -0.001 0.003 0.004 

MAD for race 0.025 0.022 0.015 0.015 0.015 0.010 0.011   

σ̂  for race 0.037 0.033 0.022 0.022 0.022 0.016 0.016   

 

Table B10.  Yacht Race Series (TopYacht scoring): Performance Indicators; MAD; σ̂ . 

DNS = Did Not Start, RET = Retired 
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Race Series Scored using Performance Indicator Filter 

The following tables show the results for each of the seven races in the series scored using our new method of 

Standard Corrected Time ( )1
SCT S R

n
= +  where S and R are the sum and the range of the corrected 

times respectively and n is the number of entrants in the race.  And with 
k k kCHC AHC z= +  where

( )1 1 0 for 0 and 0k k k kz z K PI z k z− −= + − > =  is a Performance Indicator Filter (PIF) with 2 5K =  

 

Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Sierra Chainsaw 1:18:59 0.930 4407.270 1 0.987 0.057 0 0.023 0.953 

Joust 1:18:40 0.935 4413.200 2 0.991 0.056 0 0.023 0.958 

Scarlett Runner II 1:19:28 0.935 4458.080 3 0.981 0.046 0 0.019 0.954 

Wicked 1:21:27 0.926 4525.362 4 0.957 0.031 0 0.013 0.939 

Bandit 1:23:33 0.910 4561.830 5 0.933 0.023 0 0.009 0.919 

Dream 1:21:47 0.948 4651.836 6 0.954 0.006 0 0.002 0.950 

Esprit 1:26:58 0.895 4670.110 7 0.897 0.002 0 0.001 0.896 

Conquest 1:26:30 0.914 4743.660 8 0.902 -0.012 0 -0.005 0.909 

Dark and Stormy 1:34:59 0.885 5043.615 9 0.821 -0.064 0 -0.026 0.859 

Niche DNS   12      

 

Table B11.  Race 1a:  SCT is 4679.034 sec 

 

 

Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Dream 2:33:06 0.950 8726.700 1 1.032 0.082 0.002 0.034 0.984 

Joust 2:39:23 0.958 9161.354 2 0.992 0.034 0.022 0.027 0.985 

Esprit 2:52:06 0.896 9252.096 3 0.918 0.022 0.001 0.010 0.906 

Wicked 2:45:41 0.939 9334.599 4 0.954 0.015 0.012 0.014 0.953 

Bandit 2:53:45 0.919 9580.575 5 0.910 -0.009 0.009 0.002 0.921 

Sierra Chainsaw 2:51:11 0.953 9788.263 6 0.923 -0.030 0.023 0.002 0.955 

Scarlett Runner II DNS   12      

Conquest DNS   12      

Dark and Stormy DNS   12      

Niche DNS   12      

 

Table B12.  Race 2a:  SCT is 9484.192 sec 
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Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Dream 1:38:13 0.984 5798.712 1 1.058 0.074 0.034 0.050 1.034 

Bandit 1:49:01 0.921 6024.261 2 0.953 0.032 0.002 0.014 0.935 

Wicked 1:45:44 0.953 6045.832 3 0.982 0.029 0.014 0.020 0.973 

Conquest 1:51:07 0.909 6060.303 4 0.935 0.026 -0.005 0.007 0.916 

Dark and Stormy 1:58:50 0.859 6124.670 5 0.874 0.015 -0.026 -0.010 0.849 

Niche 1:54:53 0.900 6203.700 6 0.904 0.004 0.000 0.002 0.902 

Esprit 1:54:36 0.906 6229.656 7 0.906 0.000 0.010 0.006 0.912 

Sierra Chainsaw 1:51:12 0.955 6371.760 8 0.934 -0.021 0.002 -0.007 0.948 

Joust 1:48:14 0.985 6396.590 9 0.960 -0.025 0.027 0.006 0.991 

Scarlett Runner II 1:52:24 0.954 6433.776 10 0.924 -0.030 0.019 -0.001 0.953 

 

Table B13.  Race 3a:  SCT is 6232.432 sec 

 

 

Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Dark and Stormy 1:17:19 0.849 3938.511 1 0.893 0.044 -0.010 0.011 0.860 

Niche 1:13:00 0.902 3950.760 2 0.945 0.043 0.002 0.019 0.921 

Sierra Chainsaw 1:10:51 0.948 4029.948 3 0.974 0.026 -0.007 0.006 0.954 

Scarlett Runner II 1:11:07 0.953 4066.451 4 0.970 0.017 -0.001 0.006 0.959 

Dream 1:06:23 1.034 4118.422 5 1.040 0.006 0.050 0.032 1.066 

Esprit 1:15:30 0.912 4131.360 6 0.914 0.002 0.006 0.004 0.916 

Conquest 1:15:19 0.916 4139.404 7 0.916 0.000 0.007 0.004 0.920 

Bandit 1:13:59 0.935 4150.465 8 0.933 -0.002 0.014 0.008 0.943 

Wicked 1:12:16 0.973 4218.928 9 0.955 -0.018 0.020 0.005 0.978 

Joust 1:12:20 0.991 4300.940 10 0.954 -0.037 0.006 -0.011 0.980 

 

Table B14.  Race 4a:  SCT is 4140.762 sec 

 

 

Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Niche 1:38:20 0.921 5433.900 1 0.952 0.031 0.019 0.024 0.945 

Sierra Chainsaw 1:35:17 0.954 5454.018 2 0.982 0.028 0.006 0.015 0.969 

Esprit 1:39:49 0.916 5485.924 3 0.938 0.022 0.004 0.011 0.927 

Dark and Stormy 1:46:58 0.860 5519.480 4 0.875 0.015 0.011 0.013 0.873 

Scarlett Runner II 1:36:45 0.959 5566.995 5 0.967 0.008 0.006 0.007 0.966 

Conquest 1:41:19 0.920 5592.680 6 0.924 0.004 0.004 0.004 0.924 

Bandit 1:39:24 0.943 5624.052 7 0.942 -0.001 0.008 0.004 0.947 

Wicked 1:36:24 0.978 5656.752 8 0.971 -0.007 0.005 0.000 0.978 

Dream 1:28:47 1.066 5678.582 9 1.054 -0.012 0.032 0.015 1.081 

Joust 1:38:30 0.980 5791.800 10 0.950 -0.030 -0.011 -0.018 0.962 

 

Table B15.  Race 6a:  SCT is 5616.208 sec 
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Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Conquest 1:41:26 0.924 5623.464 1 0.980 0.056 0.005 0.025 0.949 

Esprit 1:43:30 0.927 5756.670 2 0.961 0.034 0.012 0.020 0.947 

Dark and Stormy 1:52:29 0.873 5891.877 3 0.884 0.011 0.013 0.012 0.885 

Niche 1:44:08 0.945 5904.360 4 0.955 0.010 0.024 0.018 0.963 

Bandit 1:44:25 0.947 5932.955 5 0.952 0.005 0.006 0.005 0.952 

Joust 1:43:09 0.962 5953.818 6 0.964 0.002 -0.020 -0.010 0.952 

Wicked 1:43:15 0.978 6058.710 7 0.963 -0.015 0.001 -0.006 0.972 

Dream 1:34:20 1.081 6118.460 8 1.054 -0.027 0.014 -0.002 1.079 

Sierra Chainsaw DNS   12      

Scarlett Runner II DNS   12      

 

Table B16.  Race 7a:  SCT is 5966.914 sec 

 

 

Yacht ET AHC CT (sec) Place BCH PI old z new z CHC 

Joust 1:24:33 0.952 4829.496 1 1.047 0.095 -0.010 0.032 0.984 

Scarlett Runner II 1:25:01 0.966 4927.566 2 1.041 0.075 0.007 0.034 1.000 

Sierra Chainsaw 1:28:52 0.969 5166.708 3 0.996 0.027 0.015 0.020 0.989 

Wicked 1:29:33 0.972 5222.556 4 0.989 0.017 -0.006 0.003 0.975 

Niche 1:30:35 0.963 5233.905 5 0.977 0.014 0.018 0.017 0.980 

Bandit 1:31:52 0.952 5247.424 6 0.964 0.012 0.005 0.008 0.960 

Conquest 1:32:40 0.949 5276.440 7 0.955 0.007 0.025 0.018 0.967 

Dream 1:25:34 1.079 5539.586 8 1.035 -0.044 0.002 -0.017 1.062 

Esprit 1:38:32 0.947 5598.664 9 0.899 -0.048 0.020 -0.007 0.940 

Dark and Stormy RET   11      

 

Table B17.  Race 10a:  SCT is 5312.390 sec 
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The race finish placings for the yachts in the race series are aggregated in Table B18 and the total of the best 

five placings are used to decide the Series Place of each yacht.  Yachts that did not start (DNS) a race are 

given a race place of 12 (two more than the number of entrants in the series) and yachts that retired (RET) 

from a race a given a race place of 11 (one more than the number of entrants in the series). 

 

 

Yacht 

Race Placings Total 

(Best 5) 

 

Place R1a R2a R3a R4a R6a R7a R10a 

Sierra Chainsaw 1 6 8 3 2 12 3 15 1 

Niche 12 12 6 2 1 4 5 18 2 

Joust 2 2 9 10 10 6 1 20 3 

Dream 6 1 1 5 9 8 8 21 4 

Esprit 7 3 7 6 3 2 9 21 5 

Dark and Stormy 9 12 5 1 4 3 11 22 6 

Wicked 4 4 3 9 8 7 4 22 7 

Bandit 5 5 2 8 7 5 6 23 8 

Scarlett Runner II 3 12 10 4 5 12 2 24 9 

Conquest 8 12 4 7 6 1 7 25 10 

 

Table B18.  Yacht Race Series (PIF scoring 2 5K = ): Race Placings; Total Points (Best 5); Overall Place 

DNS = 12, RET = 11 

 

The Performance Indicators PI AHC BCH= −  for each race of the series are shown in Table B19 together 

with two other values denoted MAD and σ̂ .  These are tabulated for each yacht in the series (right-most 

columns) and for each race (last two rows).  MAD is Median Absolute Deviation and ( )ˆ 1.4826 MADσ =  is 

an estimate of the standard deviation of the PI’s (see Appendix F).  Both are measures of variation of the 

data and are used in the development of a Performance Indicator Filter (see Appendix E) 

 

 

Yacht 

Performance Indicator PI Series 

R1a R2a R3a R4a R6a R7a R10a MAD σ̂  

Bandit 0.023 -0.009 0.032 -0.002 -0.001 0.005 0.012 0.007 0.010 

Conquest -0.012 DNS 0.026 0.000 0.004 0.056 0.006 0.010 0.016 

Dark and Stormy -0.064 DNS 0.015 0.044 0.015 0.011 RET 0.010 0.015 

Dream 0.006 0.082 0.074 0.006 -0.012 -0.027 -0.044 0.032 0.047 

Esprit 0.002 0.022 0.000 0.002 0.022 0.034 -0.048 0.017 0.025 

Joust 0.056 0.034 -0.025 -0.037 -0.030 0.002 0.095 0.035 0.052 

Niche DNS DNS 0.004 0.043 0.031 0.010 0.014 0.009 0.013 

Scarlett Runner II 0.046 DNS -0.030 0.017 0.008 DNS 0.075 0.035 0.052 

Sierra Chainsaw 0.057 -0.030 -0.021 0.026 0.028 DNS 0.027 0.024 0.036 

Wicked 0.031 0.015 0.029 -0.018 -0.007 -0.015 0.017 0.020 0.030 

MAD for race 0.023 0.023 0.025 0.016 0.014 0.013 0.022   

σ̂  for race 0.034 0.034 0.037 0.024 0.021 0.019 0.033   

 

Table B19.  Yacht Race Series (PIF scoring): Performance Indicators; MAD; σ̂ . 

DNS = Did Not Start, RET = Retired 
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APPENDIX C 

A New Method of Determining the Standard Corrected Time 

A method of determining the Standard Corrected Time ( )SCT  of a yacht race can be deduced from the 

following two statements: 

A If every yacht sailed to their true handicap H then their corrected times would be identical. 

B The range of corrected times in an actual race is the sum of each yacht’s handicap error x. 

Considering statement A.  If all the corrected times are the same, call this value the standard corrected time 

SCT and define a yacht’s true handicap H as 

 H AHC Hδ= +  (23) 

where AHC is the yacht’s allocated handicap derived from a set of rules and Hδ  is a small unknown 

correction.  Now, we can write, for any individual yacht 

 

( )ET AHC H SCT

ET AHC ET H SCT

δ

δ

× + =
× + × =  (24) 

and defining a yacht’s handicap error x as  

 x ET Hδ= ×  (25) 

Now using (1) we may write an observation equation for each of the 1,2, 3, ,k n= …  yachts in the race as 

 k kx SCT CT− = −  (26) 

And, from statement B we may write a single additional constraint equation 

 1 2 nx x x R+ + + =⋯  (27) 

where { } { }max minR CT CT= −  is a positive quantity equal to the range of the corrected times and 

{ }CT  denotes the set of corrected times of the yachts in a race. 

Suppose there were 5n =  yachts in a race, then the set of observation equations and the constraint equation 

would have the following form 

 

1 1

2 2

3 3

4 4

5 5

1 2 3 4 5

x SCT CT

x SCT CT

x SCT CT

x SCT CT

x SCT CT

x x x x x R

− = −
− = −

− = −
− = −

− = −
+ + + + =

 (28) 

We may write these equations in matrix form =Bx f  as 

 

1 1

2 2

3 3

4 4

5 5

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

0 0 0 1 0 1

0 0 0 0 1 1

1 1 1 1 1 0

x CT

x CT

x CT

x CT

x CT

SCT R

     − −     
     − −     
     − −     =     − −     
     − −     
     
          

 (29) 

where B is a coefficient matrix having 1n +  rows and 1n +  columns, x is a column vector having 1n +  

rows and containing the unknown handicap errors 1 2, , , nx x x…  and the unknown standard corrected time 
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SCT.  The column vector f on the right-hand side of the equals sign has 1n +  rows containing the negative 

corrected times 1 2, , , nCT CT CT− − −…  and the range of the corrected times R. 

The solution for the unknown vector x is given by matrix algebra as 

 1−=x B f  (30) 

where the superscript -1 denotes matrix inverse defined as 1− =BB I  and I is the Identity matrix. 

Because of the form of B its inverse 1−B  has a simple structure 

 1

1 1 1 1 1 1
1

1 1 1 1 1 1
1

1 1 1 1 1 1
1

1 1 1 1 1 1
1

1 1 1 1 1 1
1

1 1 1 1 1 1

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

−

  −  − − − −      − −  − − −     
   − − −  − −   
  =  − − − −  −   


   − − − − −    

− − − − −


B

⋯

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯






















 
 
 
 

 (31) 

1−B  is square, having 1n +  rows and columns that can be partitioned into 4 parts.  The upper-left part 

being a square and symmetric submatrix of size n rows by n columns where the leading-diagonal elements are 

identical and equal to 1 1 n−  and the off-diagonal elements are all identical and equal to 1 n− .  The upper-

right submatrix is a column vector having n rows with all elements equal to 1 n  and the lower-left 

submatrix is a row vector having n columns with all elements equal to 1 n− .  The lower-right submatrix 

contains a single element equal to 1 n . 

For the case where 5n =  

 1

0.8 0.2 0.2 0.2 0.2 0.2

0.2 0.8 0.2 0.2 0.2 0.2

0.2 0.2 0.8 0.2 0.2 0.2

0.2 0.2 0.2 0.8 0.2 0.2

0.2 0.2 0.2 0.2 0.8 0.2

0.2 0.2 0.2 0.2 0.2 0.2

−

 − − − − 
 − − − − 
 − − − − =  − − − − 
 − − − − 
 
− − − − −  

B  (32) 

The solution for x is given by (30) and using the general form of 1−B  given by (31) we may give the 

solutions for the elements of x as 
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1 1 2 3

1
1

2 2
1

3 3
1

1 1 1 1 1
1

1

1

1

n

n

k
k

n

k
k

n

k
k

n

x CT CT CT CT R
n n n n n

CT R CT
n

x CT R CT
n

x CT R CT
n

x

=

=

=

 = − −  + + + + +   
     = + −        
     = + −        
     = + −        

∑

∑

∑

⋯

⋮

1

1

1

1

n

k n
k

n

k
k

CT R CT
n

SCT CT R
n

=

=

     = + −        
     = +        

∑

∑

 (33) 

If the standard corrected time is calculated first by defining the sum of the corrected times as S where 

 
1

n

k
k

S CT
=

= ∑  (34) 

then 

 ( )1
SCT S R

n
= +  (35) 

and the handicap errors 1 2 3, , , , nx x x x…  are given by 

   for  1,2, 3, ,k kx SCT CT k n= − = …  (36) 

Finally, the corrections to each yacht’s handicap are given by 

 k
k

k

x
H

ET
δ =  (37) 

and then, according to (5) each yacht’s Hδ  is added to their allocated handicap AHC  to give their true 

handicap H. 

We now show that the true handicap H is in fact the back calculated handicap BCH defined by (3). 

Using (7) and (8) we may write 
k k kSCT CT ET Hδ− = +  which can be rearranged as k

k

k k

CTSCT
H

ET ET
δ = −  

where the first term on the right-hand side of the equals sign is the back calculated handicap [see (3)] and 

the second term is the allocated handicap [see (1)], hence 

 k k kH BCH AHCδ = −  (38) 

and from (5) 

 
k kH BCH=  (39) 

As an example, we will use Race 1a from our Yacht Race Series in Appendix B. 
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Yacht 

 

Elapsed Time 

ET 

Allocated

Handicap 

AHC 

 

Corrected Time 

CT (sec) 

 

 

Place 

Back Calculated 

Handicap 

BCH 

Sierra Chainsaw 1:18:59 (4739 sec) 0.930 4407.270 1 0.987 

Joust 1:18:40 (4720) 0.935 4413.200 2 0.991 

Scarlett Runner II 1:19:28 (4768) 0.935 4458.080 3 0.981 

Wicked 1:21:27 (4887) 0.926 4525.362 4 0.957 

Bandit 1:23:33 (5013) 0.910 4561.830 5 0.933 

Dream 1:21:47 (4907) 0.948 4651.836 6 0.954 

Esprit 1:26:58 (5218) 0.895 4670.110 7 0.897 

Conquest 1:26:30 (5190) 0.914 4743.660 8 0.902 

Dark and Stormy 1:34:59 (5699) 0.885 5043.615 9 0.821 

Niche DNS     

 

Table C1.  Race 1a of the Yacht Race Series (Appendix B).  Yachts shown in 

corrected time order.  Time in hour (h), minute (m) second (s) format as h:mm:ss 

From Table C1, the range of corrected times 5043.615 4407.270 636.345 secR = − =  and the sum of the 

corrected times is 41474.963 secS =  and using equation (35) 

 ( )1
4679.034 secSCT S R

n
= + =  

and 

 
k kx SCT CT= −  

giving 

 1 2 3 4 5

6 7 8 9

271.764 265.834 220.954 153.672 117.204

27.198 8.924 64.626 364.581

x x x x x

x x x x

= = = = =
= = = − = −

 

where the values are seconds and the subscripts are the finish place order in the race (see Table C1). 

The correction to each yacht’s handicap is given by (37) and as an example we take the yacht Dream who 

was the 6th boat over the line with an elapsed time 6 1 : 21 : 47 4907 secET = =  and with handicap error 

6 27.198 secx = .  The handicap correction Hδ  for Dream is 

 6
6

6

27.198
0.005543 0.006

4907

x
H

ET
δ = = = ≈  

and Dream’s true handicap H is 

 6 6 6 0.948 0.006 0.954H AHC Hδ= + = + =  

Also, as we have shown above, this is Dream’s back calculated handicap computed using (3) 

 6
6

4679.034
0.953543 0.954

4907

SCT
BCH

ET
= = = ≈  

The back calculated handicaps for Race 1a using this new method of computing the standard corrected time 

are tabulated in Table C1 
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APPENDIX D 

Moving Averages, Recurrence Relations, Weighting and Exponential 

Smoothing 

Moving Averages 

In time series4 analysis, moving averages are often used to produce trendlines that provide a visual summary 

of the data.  Suppose a time series of length n has y-variables in an ordered list 1 2 3, , , , ny y y y…  where the 

subscripts denotes times 1,2, 3, ,t n= … , and a ‘window’ of period (or length) p, where 2 1p k= +  is an odd 

number, is superimposed over this list and the average of the values in the window is calculated and denoted 

tA .  And then the window is moved one place to the right over the ordered list and a new average calculated 

and denoted 1tA +  and this process repeated for averages 2 3, ,  etc.t tA A+ +   If the initial position of the 

window has the first element of the window coinciding with the first element of the ordered list then three 

simple moving averages are 

Right 
0

2

1
   for  2 1,2 2,2 3, ,

2 1t t j
j k

A y t k k k n
k

+
=−

= = + + +
+ ∑ …  (40) 

Left 
2

0

1
   for  1,2, 3, , 2

2 1

k

t t j
j

A y t n k
k

+
=

= = −
+ ∑ …  (41) 

Centre 
1

   for  1, 2, ,
2 1

k

t t j
j k

A y t k k n k
k

+
=−

= = + + −
+ ∑ …  (42) 

Each equation will yield 1 2n p n k− + = −  identical values but they will be denoted in differing sequences.  

For example, say 10n = , 2 1 5p k= + =  and 2k =  there will be 2 6n k− =  averages and equation (40) 

will yield the sequence { }5 6 7 8 9 10, , , , ,A A A A A A where the initial average is associated with the right-hand end 

of the window, (41) will yield { }1 2 3 4 5 6, , , , ,A A A A A A  where the initial average is associated with the left-hand 

end of the window and (42) yields { }3 4 5 6 7 8, , , , ,A A A A A A  where the initial average is associated with the 

centre of the window.   

An example of moving average trendlines is shown in Figure D1 where the data (shown Table D1) is the 

exchange rate between Australian Dollars (AUD) and US Dollars (USD) [USD Rate AUD× = ] for a 27-day 

period beginning on Tuesday 28th January 2020 and ending on Thursday 27th February 2020.  The exchange 

rate for each day is shown as a small square and three moving average trendlines give a visual summary of 

the exchange rate fluctuations.  The right moving average trendline (40) lags the data and the left moving 

average trendline (41) leads the data. 

  

 
4 A time series is often shown in graphical form as a scatter plot of x-y data where the x-values are a 

sequence of times (e.g. days, months, years, etc.) or some other (regular) intervals and the y-values are the 

variables of interest. 
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Figure D1.  Trendlines showing the fluctuation in the exchange rate between Australian Dollars (AUD) and 

US Dollars (USD).  USD Rate AUD× = ; day 1 = 28-Jan-2020, day 27 = 27-Feb-2020. 

 

Day Rate Day Rate Day Rate Day Rate 

1 1.47943 8 1.48192 15 1.48787 22 1.51058 

2 1.48192 9 1.48521 16 1.48920 23 1.51647 

3 1.48832 10 1.49858 17 1.48830 24 1.51515 

4 1.49388 11 1.49842 18 1.48987 25 1.51527 

5 1.49597 12 1.49566 19 1.49535 26 1.52753 

6 1.49479 13 1.48926 20 1.49790 27 1.52110 

7 1.48380 14 1.48500 21 1.51232   

 

Table D1.  Exchange rate between Australian Dollars (AUD) and US Dollars (USD) 

USD Rate AUD× = .  Day 1 = 28-Jan-2020, Day 27 = 27-Feb-2020 

Data source: Exchange-Rates.org (https://www.exchange-rates.org/history/AUD/USD/G/30) 

Recurrence relations 

The calculation of moving averages may be made more efficient by expressing them as recurrence relations.  

For example, consider the 10n =  data elements { }1 2 3 4 5 6 7 8 9 10y y y y y y y y y y  and the 

calculation of the right moving average (40) for a window of period 3p =  
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( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1
3 1 2 33

1 1
4 2 3 4 3 4 13 3

1 1
5 3 4 5 4 5 23 3

1 1
9 7 8 9 8 9 63 3

1 1
10 8 9 10 9 10 73 3

A y y y

A y y y A y y

A y y y A y y

A y y y A y y

A y y y A y y

= + +

= + + = + −

= + + = + −

= + + = + −

= + + = + −

⋮
 

and a recurrence relation for the right moving average is 

 ( )1

1
   for  1, 2, ,t t t t pA A y y t p p n

p
− −= + − = + + …  (43) 

This requires only the first average 1tA −  to be calculated. 

Weighted Moving Averages 

Weighted moving averages can be developed by considering the weighted average q of a set of values 

1 2 3, , , ny y y y…  each having weight 1 2 3, , , , nw w w w…  where 

 1 1 2 2 1

1 2

1

n

k k
n n k

n
n

k
k

w y
w y w y w y

q
w w w

w

=

=

+ + +
= =

+ + +

∑

∑

⋯

⋯
 (44) 

and weights are numbers that reflect the degree of importance attached to the y-value, i.e., larger weights 

reflect values of higher importance. 

Suppose the window has 2 1p k= +  elements and p is odd, and that weights are just the location of window 

elements.  In the right moving average, the weight of the right-most element is p and the weights of elements 

to the left are 1, 2, , 3,2,1p p− − … .  The weighted right moving average is 

 

( )

( ) ( )
( )

0

0
2

2

2
   for  , 1, ,

1 2 1 1

t j
j k

t t j
j k

p j y

WA p j y t p p n
p p p p

+
=−

+
=−

+

= = + = +
+ − + + + +

∑
∑ …

⋯
 (45) 

Note here that ( ) ( )
( )1

1 2 3 2 1
2

p p
p p p

+
+ − + − + + + + =⋯  is a triangular number5 and the weights 

1 2, 1, , 1pw p w p w= = − =…  form an arithmetic progression with a common difference of 1. 

  

 

5
 Triangular numbers are given by the formula ( ) ( )

( )1
1 2 3 2 1

2
n

n n
T n n n

+
= + − + − + + + + =⋯  which can 

be verified by considering an n n×  square array of elements (n rows by n columns).  
n

T  is the sum of the elements in 

each row beginning at the leading diagonal element of each row and will be equal to the number of elements on the 

leading diagonal plus one half of the remaining elements in the array, i.e., ( ) ( )
2

11

2 2
n

n n
T n n n

+
= + − =  
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Exponential Smoothing 

We follow here the work of Hunter6 (1986) and the NIST/SEMATECH e-Handbook. 

Suppose we have observations y up to and including time 1t − , that is, our observations form the set 

{ }1 2 3 2 1, , , , ,t ty y y y y− −…  and we wish to forecast or predict the next observation 
ty .  We denote our 

prediction as t̂y  and when the actual observation ty  becomes available the prediction error is 

 ˆ
t t te y y= −  (46) 

The method of exponential smoothing takes the prediction for the previous period and adds to it a 

proportion of the prediction error at that previous time period to give the next prediction or the update as 

 
( )1 1 1

for 1
ˆ

ˆ ˆ for 1t
t t t

t
y

y y y t

µ

α− − −

 ==  + − >
 (47) 

where 0 1α< ≤  is a constant known as the weighting factor and µ  is an apriori7 value of the data.  We 

can rearrange the recurrence relationship (47) and write the update as 

 ( )1 1

for 1
ˆ

ˆ1 for 1t
t t

t
y

y y t

µ

α α− −

 ==  + − >
 (48) 

[Note here that Hunter (1986) describes the Exponentially Weighted Moving Average 

(EWMA) as (in his notation) 

 
( )

( ) ( )
1ˆ ˆEWMA 3

ˆ ˆ 4
t t t

t t t

y y e

y y y

λ

λ

+= = +
= + −

 

And then re-writes his equation (4) as 

 ( ) ( )1ˆ ˆ1 5t t ty y yλ λ+ = + −  

The only difference in his notation and ours is that λ  replaces α  and the subscript t is 

advanced one unit.] 

Using (48) in a sequence gives 

 

( )
( )
( ) ( ){ }

( ) ( )
( )
( ) ( ) ( ){ }

( ) ( ) ( )

2 1

3 2 2

2 1

2

2 1

4 3 3

2

3 2 1

2 3

3 2 1

ˆ 1

ˆ ˆ1

1 1

1 1

ˆ ˆ1

1 1 1

1 1 1

y y

y y y

y y

y y

y y y

y y y

y y y

α α µ

α α

α α α α µ

α α α α µ

α α

α α α α α α µ

α α α α α α µ

= + −
= + −

= + − + −

= + − + −
= + −

= + − + − + −

= + − + − + −

 

and from this sequence we can write a general form as 

 ( ) ( )
1

1 1

1

ˆ 1 1    for  1
t

k t

t t k
k

y y tα α α µ

−
− −

−
=

 
 = − + − > 
  
∑  (49) 

 
6 J. Stuart Hunter Professor Emeritus at Princeton University. 
7 apriori [Latin a priori what is known before] often taken to mean something known beforehand, or known 

from prior knowledge 
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For 5t =  equation (49) gives 

 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
1 5 1

5 5
1

0 1 2 3 4

4 3 2 1

2 3 4

4 3 2 1

ˆ 1 1

1 1 1 1 1

1 1 1 1

k

k
k

y y

y y y y

y y y y

α α α µ

α α α α α α α α α µ

α α α α α α α α µ

− −
−

=

 
 = − + − 
  
 = − + − + − + − + − 
 

= + − + − + − + −

∑

 

Letting weights ( ) ( ) ( )2 3

4 3 2 1, 1 , 1 , 1w w w wα α α α α α α= = − = − = −  we have 

 ( )4

5 4 4 3 3 2 2 1 1ˆ 1y w y w y w y w y α µ= + + + + −  

and for 2 3α =  and 1 1 3α− =  the weights are 

 
( )
( )
( )

4

3

2

2

3

1

0.666667

1 0.222222

1 0.074074

1 0.024691

w

w

w

w

α

α α

α α

α α

= =

= − =

= − =

= − =

 

This demonstrates the exponential nature of the weights in the calculation of 
t̂y  where the weights are 

tending to zero and the difference between successive weights is also tending to zero.  It should be noted here 

that the last term in the summation for 5̂y  is ( )4
1 α µ−  and for 2 3α =  then ( )4

1 0.012346α− =  and for 

any t this coefficient is ( ) 1
1

t
α

−
−  and for the calculation of 10ŷ  then the coefficient ( )9

1 0.000051α− = . 

An example of exponential smoothing is shown in Figure D2 that is a scatter plot of the exchange rate 

between Australian Dollars (AUD) and US Dollars (USD) where USD Rate AUD× =  for a 27-day period 

beginning on Tuesday 28th January 2020 and ending on Thursday 27th February 2020 [see data in Table D1].  

The predicted exchange rate ŷ  is given by ( )today yesterday yesterdayˆ ˆ1y Rate yα α= × + − ×  where the 

weighting factor 2 3α =  and is shown as a solid line. 
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Figure D2.  Trendlines showing the fluctuation in the exchange rate between Australian Dollars (AUD) and 

US Dollars (USD).  USD Rate AUD× = ; day 1 = 28-Jan-2020, day 27 = 27-Feb-2020. 

 

Performance Handicap Systems in yachting sometimes use moving averages or exponential smoothing in 

calculating new handicaps after each yacht race.  A rule that is sometimes used is: 

 Calculated Handicap = 1 3  Back Calculated Handicap + 2 3  Allocated Handicap  

or 
1 2

3 3
CHC BCH AHC= +  (50) 

If we assume that allocated handicaps are values predicted from past performances in yacht races then we 

can denote these as 1 2 3ˆ ˆ ˆ, , ,t t ty y y− − − …  and at each of these prior races the measurements or observations 

related to performance were the back calculated handicaps denoted as 1 2 3, , ,t t ty y y− − − …  then we can use (48) 

and write 

 ( )1 11   for 0 1 and 1t t tAHC BCH AHC tα α α− −= × + − < ≤ >  (51) 

and if the weighting factor 1 3α =  then we have the rule (50). 

Handicaps based on this recurrence relationship could be called exponentially weighted handicaps and they 

are sometimes called exponentially averaged handicaps. 

The prediction formula for handicaps is sometimes written as 

 1 1

1 1
  for 1 and 1t t t

G
AHC BCH AHC G t

G G
− −

 − = × +  > >   
 (52) 

where 1G α=  is known as the gain.  (If 1 3α =  then the gain is 3) 
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APPENDIX E 

The Kalman Filter (KF) and Performance Indicator Filter (PIF) 

The Kalman Filter 

The Kalman filter is a set of equations that are applied recursively to estimate the state of a system from a 

sequence of noisy measurements at times 1 2 3, , ,t t t …etc.  The state of the system is its value or values at 

times 1 2 3, , ,t t t …etc. and a system may have a single value or multiple values.  Say, for instance, the system 

is a ship steaming on a particular heading in a shipping channel and the state of the system (the ship) is its 

east and north coordinates ( ),k kE N  and its velocity ( ),k kE Nɺ ɺ We say that this system (the ship) has a state 

vector , , ,
T

k k k k kE N E N =  x ɺ ɺ  containing four elements and the subscript k indicates a value at time 
kt . 

On the other hand, a system may be a process such as a Performance Indicator Filter (PIF) used in scoring a 

yacht race series.  The state of this system is a single value ( )kz  that is a function of the performance 

indicator ( )kPI  determined at times 1 2 3, , ,t t t …etc., and this system (the PIF) has a state vector k kz
 =  x  

containing a single element and the subscript k indicates a value at time 
kt . 

Noisy measurements are measurements that contain small random errors assumed to be normally distributed, 

i.e., the aggregation of errors in size groupings would form the familiar symmetric bell-shaped histogram with 

positive and negative errors equally likely and small errors more frequent than large errors.  It is often 

convenient to talk of residuals (or corrections) rather than errors, where a residual is the same magnitude as 

an error but of opposite sign.   

A Kalman filter gives the best estimates of the state of a dynamic system at a particular instant of time.  

And a dynamic system can be one whose values are changing with time, due to the motion of the system and 

measurement errors, or one whose values are measured at various instants of time and appear to change due 

to measurement errors.  Dynamic systems do not have a single state (consisting of one or many values) that 

can be determined from a finite set of measurements but instead have a continuously changing state that has 

values sampled at different instants of time.  

The Kalman filter equations were published in 1960 by Dr. R.E. Kalman in his famous paper describing a 

new approach to the solution of linear filtering and prediction (Kalman 1960).  Since that time, papers on the 

application of the technique have been filling numerous scientific journals and it is regarded as one of the 

most important algorithmic techniques ever devised.  It has been used in applications ranging from 

navigating the Ranger and Apollo spacecraft in their lunar missions to predicting short-term fluctuations in 

the stock market.  Sorenson (1985) shows Kalman's technique to be an extension of C.F. Gauss' original 

method of least squares developed in 1795 and provides an historical commentary on its practical solution of 

linear filtering problems studied by 20th century mathematicians.   

The derivation of the Kalman filter equations can be found in many texts related to signal processing that is 

the usual domain of Electrical Engineers, e.g., Brown and Hwang (1992).  These notes use notation and 

terminology that would be familiar to surveyors (one of the authors has a surveying background) and the 

derivation of the equations of the Kalman Filter used here follow two authors, Krakiwsky (1975) and Cross 

(1992) both with surveying backgrounds.  The Kalman filter equations and the associated measurement and 

dynamic models are given below with a brief explanation of the terms. 

In the explanation that follows the ‘hat’ symbol (^) above a vector x indicates that it is an estimate of the 

true (but unknown) state of the system derived from the Kalman Filter (a least squares process).  This is 

also known as the filtered state.  The ‘prime’ symbol (′) indicates a predicted quantity. 
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Primary and Secondary (or Dynamic) Measurement Models 

Suppose that 1 2 3 1, , , , ,k k−x x x x x…  are vectors of parameters or state vectors of a system at times 

1 2 3 1, , , , ,k kt t t t t−…  and that 1 2 3 1, , , , ,k k−l l l l l…  are the corresponding vectors of measurements associated with 

the parameters.  We may write three equations as follows: 

 
1 1 1 1 1

1

primary 

primary 

secondary or dynamic

k k k k k

k k k k k

k k m

t

t

− − − − −

−

+ =

+ =
= +

v B x f

v B x f

x Tx v

  (53) 

where 

 x is the state vector containing the parameters of the system 

 v is the vector of residuals associated with the measurements l where ˆ = +l l v   

 B is a coefficient matrix 

 f is a vector of numeric terms derived from the measurements l 

 T is the transition matrix 

 vm is a vector of residuals associated with the dynamic model 

The primary measurement models in (53) link measurements l (contained in the vector of numeric terms f ) 

with parameters in the state vector x at times 1kt −  and 
kt . 

The secondary or dynamic model in (53) links the state vectors x at times 1kt −  and 
kt .  The transition 

matrix T is an attempt to model temporal changes between the state vectors (the dynamics of the system) 

and vm is a vector of corrections reflecting the fact that the transition matrix T is an approximation of the 

true dynamics.  The elements of vm are assumed to be small, random and normally distributed with a mean 

of zero. 

The measurements 1  and k k−l l  and the model corrections vm have associated weight matrices 1,k k−W W  and 

mW  and cofactor matrices 1,k k−Q Q  and 
mQ  where in general 1−=Q W . 

System Driving Noise of the Secondary Model 

For the solution of many practical problems, it is useful to assume the vector mv  as being the product of two 

matrices 

 
m =v Hw   (54) 

where w is a vector of quantities known as the system driving noise which cause the secondary model to be 

incorrect and H is a coefficient matrix chosen so that the product Hw represents the effect of these 

quantities on the parameters.  Note that in general H will not be a square matrix as the number of error 

sources causing the system noise in the secondary model is not necessarily equal to the number of parameters 

in x. 

The Cofactor Matrix of the Secondary Model Qm 

The system driving noise w in (54) is assumed to be a vector of random quantities with zero mean and 

variance matrix estimated by the cofactor matrix 
wQ .  The cofactor matrix Qm can be obtained using 

Propagation of Variances (or propagation of cofactors) that can be summarized as follows: 

If linear (or linearized) equations can be expressed in a matrix form 

 = +y Ax b  

where y is a vector of variables, A is a coefficient matrix, x is a vector of variables having an associated 

cofactor matrix xQ  and b is a vector of constants then the cofactor matrix of the variables y is given by 
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 T
y x=Q AQ A  

Cofactor propagation using (54) gives 

 T
m w=Q HQ H   (55) 

and the weight matrix of the secondary model is given by 

 ( ) ( ) 11 T
m m w

−−
= =W Q HQ H   (56) 

The Kalman Filter Equations 

With initial estimates of the state vector 1ˆ
k−x  and the state cofactor matrix 

1k̂x −
Q ; and with the cofactor 

matrix of the dynamic model 
mQ  a Kalman Filter has the following five general steps 

(1) Compute the predicted state vector at kt  

 1ˆ
k k−′ =x Tx   

(2) Compute the predicted state cofactor matrix at 
kt   

 
1ˆk kx x m−′ = +Q TQ T Q  

(3) Compute the Kalman Gain matrix 

 ( ) 1

k k

T T
x k k k x k

−
′ ′= +K Q B Q B Q B  

(4) Compute the filtered state vector by updating the predicted state with the measurements at 

kt  

 ( )k k k k k
′ ′= + −x x K f B x  

(5) Compute the filtered state cofactor matrix 

 ( )
k̂ kx k x ′= −Q I KB Q  

Go to step (1) and repeat the process for the next measurement epoch 1kt +   

The Kalman filter equations are relatively easy to implement on modern computers (a reason for its 

popularity) and the example studied below will be supplemented by Octave computer code. 
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A Kalman Filter in Calculated Handicaps for Yachting. 

Kalman Filter’s are widely used in navigation and systems to assess the performance of yachts.  For example, 

Douguet et al. (2013) use Kalman Filters to model the leeway of a sailboat as part of a method for evaluating 

sailboat performance and there are numerous other published applications.  Here we wish to use a Kalman 

Filter to model the performance of the yacht Dream in the Race Series shown in Appendix B and scored 

using TopYacht scoring with 45% mark boat [see equation (4)] and calculated handicaps 

1 2 1
3 3 3

CHC BCH AHC AHC PI= + = +  where the performance indicator PI BCH AHC= −  and AHC 

and BCH denote allocated and back calculated handicaps respectively.   

In particular, Dream’s performance indicators for the seven races are shown in Table B10 and repeated here 

as 

 0.026 0.057 0.076 0.013 0.022 0.003 0.030PI  = − −    (57) 

A plot of Dream’s performance indicators is shown in Figure E1 

 

Figure E1.  Dream’s performance indicators for the seven-race series 

The general form of the calculated handicap is k k kCHC AHC z= +  [see equation (12)] where z is a numeric 

value between zero and kPI±  that is a function of the yacht’s AHC prior to the race and BCH after the 

race.  And, since the CHC for one race is the AHC for the next race we may write 

 1k k kAHC AHC z+ = +  (58) 

We now wish to use a Kalman Filter to estimate kz  given measurements kPI  

The measurements kPI  (affected by random errors), and residuals can be expressed as 

 ˆ
k k k+ =l v l   (59) 

where kl  is the n,1 vector of measurements, kv  is the n,1 vector of residuals (small unknown corrections to 

the measurements) and ˆkl  are estimates of the true (but unknown) value of the measurements.  n is the 

number of measurements at each epoch, that in this case is one.  The primary measurement model can be 

expressed in terms of the filtered state vector ˆ
kx  at time kt  as 

 ˆ
k k k k+ =v B x f  (60) 
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In this case ˆ
kx  contains the elements of ˆ

kl , both vectors containing only single quantities.  And 
k k= −f l  

also both containing single quantities (the PI at 
kt ).  The matrix B will contain a single quantity, 1 = − B . 

The dynamic model linking the elements of the state vector at times 1kt −  and kt  is  

 1k k m−= +x Tx v  (61) 

The state vector contains a single element that may change between 1kt −  and kt  but the dynamics are 

unknown and changes will be due to measurement error and model error.  The transition matrix T will 

contain a single element 1 =  T  and the model correction 
m =v Hw  is a single element vector containing a 

random quantity.  By setting 1 =  H  the model correction is equal to the system driving noise, i.e., 

m =v w .  We can “assign” an appropriate estimate of the standard deviation 
ws  and the cofactor matrix 

2
w ws

 =   Q  is now defined, and by cofactor propagation [see (55)], the cofactor matrix of the dynamic model 

m w=Q Q .  We choose 0.033ws =  which gives ( )22 0.033w ws
  = =      

Q .  The value 0.033ws =  chosen here 

is representative of the values of ( )ˆ 1.4826 MADσ ≈  shown in Table B10 in Appendix B. 

Lastly, an estimate of the cofactor matrix of the measurements Q and the filtered state cofactor matrix 
kx

Q  

must be made.  Let us assume (guess) that the measurements have a standard deviation of 0.075ls =  and 

( )22 0.075ls
  = =      

Q .  Also, since our primary measurement model has a state vector containing a single 

value ( )kz , then xQ  will only contain a single value, and we have as a starting estimate ( )
1

2
0.075x

 =  
 

Q , 

the same as Q.  Note here that the value ( )22 0.075 0.005625ls
    = = =       

Q  chosen as a ‘guess’ is not too 

far removed from the final filtered estimate ( )
7

2
0.002001 0.045x

  = ≈     
Q  shown below in the output of 

Octave function yacht1.m 

Now we can now start the Kalman filter at epoch 2t  using the value at 1t  as filtered estimates noting here 

that we have decided that the filtered state 2 2
1 1 1 15 5

ˆ z l PI= = =x . 

 

(1) Compute the predicted state vector at 

epoch 2t  using 2
5
 of the measurement 

−0.026 at 1t  as the filtered state 1x̂  

 
2 1ˆ

1 0.0104

0.0104

′ =
   = −   

= −

x Tx

 

(2) Compute the predicted state cofactor 

matrix at 2t  using ( )
1

2
0.075x

 =  
 

Q  as 

the filtered estimate  

 ( ) ( )
2 1

2 2
1 0.075 1 0.033

0.006714

T
x x m′ = +

      = +         
 =  

Q TQ T Q

 

(3) Compute the Kalman Gain matrix noting 

that ( )20.075
 =  
 

Q  

 

( )
[ ][ ]

( ) [ ][ ][ ]( )

2 2

1

1

2 2 2

2

1

0.006714 1

1 0.006714 10.075

0.006714 0.012339

0.544128

T T
x x

−

−
′ ′

−

−

× + − −

= +

=

 
  

   = −   
= −

K Q B Q B Q B
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(4) Compute the filtered state vector 2x̂  

by updating the predicted state with the 

measurements at 2t  

 

( )
[ ] [ ]{

[ ] [ ][ ]( )}

2 2 2 2 2

0.0104 0.544128

0.057 1 0.0104

ˆ

0.026274

− + −

− − − −

′ ′= + −
=

×
=

x x K f B x

 

(5) Compute the filtered state cofactor matrix 

at 2t  

 

( )
( )

2 22 2

1 0.544128 1

0.006714

0.003061

x x ′= −
     = − − −     

 ×  
=

Q I K B Q

 

 

Go to step (1) and repeat the process for 

the next measurement epoch 3t . 

 

The values from the Kalman Filter for epochs 3 4 5,  and t t t  are 

epoch 3t  epoch 4t  epoch 5t  

3

3

3

3

3

ˆ

0.026274

0.004150

0.424536

ˆ 0.047385

0.002388

x

x

′

′ =
=

= −

=
=

x

Q

K

x

Q

 
4

4

4

4

4

ˆ

0.047385

0.003477

0.382005

ˆ 0.034250

0.002149

x

x

′

′ =
=

= −

=
=

x

Q

K

x

Q

 
5

5

5

5

5

ˆ

0.034250

0.003238

0.365323

ˆ 0.029774

0.002055

x

x

′

′ =
=

= −

=
=

x

Q

K

x

Q

 

 

An Octave function yacht1.m using the performance indicator data given above has the following 

output 

>> yacht1 

 

Epoch =   2, measurement PI =  0.057 
Gain K =  -0.544128 1/K = -1.8378 
Filtered State  Corrn         Filtered State cofactor matrix Qxx 

 0.026274        0.036674     0.003061 

 
Epoch =   3, measurement PI =  0.076 

Gain K =  -0.424536 1/K = -2.35551 

Filtered State  Corrn         Filtered State cofactor matrix Qxx 
 0.047385        0.021110     0.002388 
 

Epoch =   4, measurement PI =  0.013 

Gain K =  -0.382005 1/K = -2.61777 
Filtered State  Corrn         Filtered State cofactor matrix Qxx 
 0.034250       -0.013135     0.002149 

: 

: 
: 

Epoch =   7, measurement PI = -0.030 

Gain K =  -0.355725 1/K = -2.81116 
Filtered State  Corrn         Filtered State cofactor matrix Qxx 
 0.002327       -0.017848     0.002001 

 

xhat = -0.0104000   0.0262743   0.0473846   0.0342495   0.0297745    
        0.0201750   0.0023265 
 

>> 
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The variable ‘xhat’ above is the filtered state vector x̂  and it contains the z-values noting that 2
1 15

z PI=  

 0.010 0.026 0.047 0.034 0.030 0.020 0.002z  = −    (62) 

 

 
Figure E2.  Dream’s filtered z-values (circles and dotted line) derived from 

PI values (squares and dashed line).  Note that 2
1 15

z PI=  

 

A Performance Indicator Filter in Yachting. 

By inspection of the process outlined above we write a simplified recurrence formula for computing the values 

kz  and call this a Performance Indicator Filter (PIF) 

 ( )1 1 0 for 0 and 0k k k kz z K PI z k z− −= + − > =  (63) 

Using (63) with 2 5K =  and 0.026 0.057 0.076 0.013 0.022 0.003 0.030PI  = − −    gives the 

following tabulated results 

 

k PI z 

1  -0.026  -0.010 

2  0.057  0.017 

3  0.076  0.041 

4  0.013  0.030 

5  0.022  0.027 

6  0.003  0.017 

7  -0.030  -0.002 

 

Table E1.  PI values and z-values computed from a Performance Indicator 

Filter for Dream for the seven-race series 
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These z-values are a reasonable approximation of those from the Kalman Filter (62) and Figure E3 shows the 

relationships between the Performance Indicators, the z-values from the Kalman Filter and the z-values from 

the Performance Indicator Filter (63) 

 

 

Figure E3.  Dream’s PI values (squares and dashed line), Kalman Filter z-

values (circles and dotted line) and PIF z-values (crosses and solid line).  

Note that 2
1 15

z PI=  
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Appendix F 

Mean, Variance, Standard Deviation and Median Absolute Deviation (MAD) 

Sample Mean, Standard Deviation and Variance 

In the estimation of the precision of data 1 2 3, , , , nx x x x…  we often use the sample variance 2
xs , and its 

positive square-root the sample standard deviation 
xs  as measures of the variability of the data computed 

from the data itself.  And we also assume that the data is a finite sample of size n drawn from an infinite 

population N having a mean 
xµ , variance 2

xσ  and standard deviation 
xσ  being the positive square-root of 

the variance.  The population values 2,x xµ σ  are often unknown and estimated by the sample values 2, xx s  

where 
1

1
n

k
k

x x
n =

= ∑  is the sample mean.  The sample standard deviation and its squared value the sample 

variance, are also measures of the scale of the data and the mean of a set of data is also a measure of the 

location of the data sample. 

For the data 1 2 3, , , , nx x x x…  that are a sample of size n, the sample standard deviation xs  computed from 

the sample variance ( )22

1

1

1

n

x k
k

s x x
n =

= −
− ∑  where xs  is the positive square root of 2

xs  

But the sample mean and variance (and hence the sample standard deviation) are known to suffer from the 

effects of outliers, since large values affect the mean x  and also the squared differences ( )2kx x−  in the 

calculation of the variance. 

Median Absolute Deviation (MAD) 

A more robust measure of the location of a sample is the median M and a more robust measure of the scale is 

the Median Absolute Deviation (MAD) that is defined as the median of the absolute deviations from the 

sample’s median M, i.e., 

 ( ) ( )MAD median     where mediank kx M M x= − =  (64) 

The median M of a sample of n values is obtained by first ordering the values from smallest to largest and 

then choosing the middle value if n is an odd number, or the average of the two middle values if n is even.  

In either case there will be the same number values that are larger than or equal to the median, and smaller 

than or equal to the median M, 

 
( )
ord

1

ord ord1
12

2 1

2

j

j j

x n j
M

x x n j

+

+

 = +=  + =
 (65) 

For example, suppose kx  is a set of 1,2, ,k n= …  values and for 7n = , { }2 7 4 16 1 0 8kx = − .  

The set is ordered from smallest to largest as { }ord 2 0 1 4 7 8 16kx ↑
= −  and since n is odd, the 

median M is the middle value indicated with ↑  and ( )1 2 3j n= − =  and using (65) 

ord ord
1 4 4jM v v+= = = .  There are 3 values less than M (the values to the left of the 4th value) and 3 values 

greater than M (the values to the right of the 4th value). 
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Now suppose the set { }2 7 2 16 1 0 8 4 4 5kx = − −  has 10n =  values that is ordered from 

smallest to largest as { }ord 5 2 0 1 2 4 4 7 8 16kx ↑ ↑
= − − , and since n is even, the median M is the 

average of the two middle values and 2 5j n= =  and using (65) ( ) ( )ord ord1 1
12 2

2 4 3j jM x x += + = + = .  

There are 5 values less than the median (the first 5 values) and 5 values greater than the median (the last 5 

values). 

It should be noted here that if X is a random variable that can take values n values 1 2, , , nx x x…  having a 

median M then the probability that any X is less than or equal to the median is exactly 1
2
 or 

( ) 1
2

Pr X M≤ =  and if X is a continuous random variable with probability density function ( )Xf x  and 

cumulative distribution function ( )XF x , so that ( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
=  then the 

median M is defined by the solution of the integral equation ( ) ( ) ( ) 1
Pr

2

M

X XX M F M f x dx

−∞

≤ = = =∫ . 

Appendix G shows how this result can be used to determine the value of a scale factor b that enables the 

MAD to be used as a consistent estimator of the standard deviation σ  of normally distributed data where 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (66) 
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Appendix G 

Population Median and Median Absolute Deviation (MAD) 

The derivation of the probability statements ( ) 1
Pr MAD

2
X µ− ≤ =  and 

MAD 3
Pr

4
Z

σ

  ≤  =   
 [see 

equations (70) and (71) below] are the work of Dr Max Hunter, who turned his keen eye and talent for rigour 

to a topic not often treated in the statistical literature.  It’s a joy.  [Max Hunter is a mathematician, friend 

and former colleague of one of the authors]. 

Let X be a random variable with density function ( )Xf x  and distribution function ( )XF x , so that 

( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
= . 

The population median m is defined by the solution of the integral equation 

 ( ) ( ) ( ) 1
Pr

2

m

X XX m F m f x dx

−∞

≤ = = =∫  (67) 

The alternative equation 

 ( ) 1

2X

m

f x dx

∞

=∫  (68) 

Can also be used to define m. 

Let the random variable Y be defined by 

 
,  if 

0
,  if 

X m X m
Y X m

m X X m

 − ≥≤ = − =  − <
 

And suppose its density function is ( )Yg y  with distribution function ( )YG y .  Then for 0y ≥ , 

 

( ) ( )
( )
( )
( )
( ) ( )
( ) ( )

Pr

Pr

Pr

Pr

Pr Pr

Y

X X

G y Y y

X m y

y X m y

m y X m y

X m y X m y

F m y F m y

= ≤

= − ≤
= − ≤ − ≤

= − ≤ ≤ +
= ≤ + − ≤ −
= + − −

 

And for ( )0, 0Yy G y< = . 

Hence for 0y ≥  

 ( ) ( ) ( ) ( ){ } ( ) ( )Y Y X X X X

d d
g y G y F m y F m y f m y f m y

dy dy
= = + − − = + − −  

and ( ) 0Yg y =  for 0y < . 

The population median M of the random variable Y satisfies the equation 

 ( ) 1

2

M

Yg y dy

−∞

=∫  

And 
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( ) ( ) ( ) ( )

( ) ( ){ }

( ) ( )

( )

0

0 0

0

     (with substitutions , )

M M M

Y Y Y Y

M

X X

m M m M

X X

m m
m M

X

m M

g y dy g y dy g y dy g y dy

f m y f m y dy

f s ds f t dt s m y t m y

f s ds

−∞ −∞

+ −

+

−

= + =

= + + −

= − = + = −

=

∫ ∫ ∫ ∫

∫

∫ ∫

∫

 

and therefore 

 ( ) 1

2

m M

X

m M

f s ds

+

−

=∫  (69) 

Suppose now that ( )Xf x  is symmetric about the origin then 0m =  from (67).  So by (69) 

 ( ) ( )
0

1
2

2

M M

X X

M

f x dx f x dx

−

= =∫ ∫  

and therefore 

 ( )
0

1

4

M

Xf x dx =∫  

Thus the interval ,M M −   encloses an area of 0.5 under the density function for X, or since 

 ( ) 3

4

M

Xf x dx

−∞

=∫ , 

M is the 75 percentile of X. 

But M is just the definition of MAD, so for any random variable X with population mean { }E X µ=  and a 

symmetric density function about { }E X µ=  

 ( ) 1
Pr MAD

2
X µ− ≤ =  (70) 

Now 

 

( ) MAD
Pr MAD Pr

MAD
Pr     is a standard normal random variable

MAD MAD
Pr    by definition of modulus

MAD MAD
Pr Pr    by symme

X
X

Z Z

Z

Z Z

µ
µ

σ σ

σ

σ σ

σ σ

 −  − ≤ = ≤   
 = ≤    
 = − ≤ ≤    
     = ≤  − ≤ −        

try

MAD MAD
=Pr 1 Pr    by definition

MAD
2Pr 1

Z Z

Z

σ σ

σ

       ≤  − − ≤          
 = ≤  −   

 



 

49 

 

and, using (70) 

 
MAD 3

Pr
4

Z
σ

  ≤  =   
 (71) 

If ( )Zf z  is the density function of the standard normal distribution and ( )ZF z  is the distribution function 

then 

 1MAD 3

4ZF
σ

−  =    
 (72) 

Where 1
ZF
−  denotes the standard normal inverse cumulative distribution function.  Most mathematical 

software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute inverse cumulative 

distribution functions and for the standard normal distribution GNU Octave has a function norminv() that 

computes the value of ( )1
ZF x−  and for ( )1MAD 3 4ZFσ −=  can be computed from the following 

instructions in the Octave Command Window. 

 

>> format long g 
>> MAD_on_sigma = norminv(3/4) 
MAD_on_sigma = 0.6744897501960818 

>> 

 

And 

 1 8
M

0.67448975019608
AD 3

1
4ZF

σ

−  =  ≈   
 (73) 

Inspection of (66) leads to  

 1.482602218505602
MAD

b
σ

= ≈  (74) 

We can use this relationship to estimate the standard deviation from 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (75) 

 

 

 


